

# KSP

**Photon Counting Integrated Circuit for Particulate Sensor & medical equipment** Product Specification

#### **General Description**

The KSP is a mixed-signal ASIC for a particulate sensor and medical equipment applications. It is a photoncounting type Readout Integrated Circuit (ROIC) for a continuous data acquisition from a SiPM photodiode.

The KSP is designed to detect and process small photoelectric currents ranging between 10 picoamperes and 10 nano-amperes.

The KSP has an embedded peak detector that detects the absolute amplitude of photoelectric signals, and outputs the peak value with 1MHz bandwidth.

The KSP operates at a high frequency (wide bandwidth) for fast data acquisition, and it is suitable for applications that utilizes photoelectronic detection mechanism, such as particulate sensors, radioactive detectors, and bio-medical sensors. The KSP is optimized for PM1 – PM10 particulate detection when used for particulate detector, and also applicable to CT/PET radioactive diagnosis equipment. The chip can output data for digital analytic image reconstruction in real-time.

The KSP is one of the three different versions of Piera System's PCICs (Particle Counting IC).

#### **Features**

- Internal peak detector
- 3.3V single power supply
- External gain control
- High Sensitivity (10pA 10nA)
- 1 digital and 1 analog output
- Threshold control (0~3.3V)
- High sampling rate ~1MHz
- Internal noise cancellation

#### **Applications**

- Particulate sensor
- X-ray, γ-ray detector
- Bio-medical sensor
- Radioactive measurement devices

### Pin Configuration



#### **Recommended Operating Conditions**

| Parameter                | Symbol                             | Min | Тур. | Max | Unit |
|--------------------------|------------------------------------|-----|------|-----|------|
| Supply<br>Voltage        | VDDA_PA,<br>VDDA_DISC<br>, VDDA_FA | 3.0 | 3.3  | 3.6 | V    |
| Operating<br>Temperature | T <sub>OP</sub>                    | 0   | -    | 85  | °C   |
| Storage<br>Temperature   | T <sub>STG</sub>                   | -40 | -    | 125 | °C   |

Electrical Characteristics are identical to KSD

Piera Systems Inc. reserves the right to make corrections, modifications enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Please contact Piera Systems anytime to obtain the latest relevant information. We are ready to help you determine which of our solutions will best meet your needs.



## Pin Description

| Pad Dad Name | Function    | Value                                                              |     |         |        |
|--------------|-------------|--------------------------------------------------------------------|-----|---------|--------|
| No. Pad Name |             | Function                                                           |     | Typ.(V) | Max(V) |
| 1            | PA_OUT      | Preamplifier output. Test Pin.                                     | 1   |         | 3      |
| 2            | VSSA_PA     | Ground pin for preamplifier. Must be connected to 0V.              |     | 0       |        |
| 3            | GC          | Gain control input.                                                | 0   | 0       | 0.5    |
| 4            | IN_N        | Pre-amplifier Input. Connect to a cathode of a photodiode.         |     | -       |        |
| 5            | IN_P        | Preamplifier reference input voltage. External test voltage        | 0.8 | 1       | 1.2    |
| 6            | VB1         | Reference voltage.                                                 | 0.8 | 1       | 1.2    |
| 7            | VDDA_PA     | Power supply input for preamplifier.                               |     | 3.3     |        |
| 8            | VSS1        | Ground pin. Must be connected to 0V.                               |     | 0       |        |
| 9            | TH_TRIGGER  | Peak detector threshold input voltage.                             | 1   |         | 2      |
| 10           | SH_BASE     | S/H Base Voltage.                                                  | 1   | 1.3     | 1.5    |
| 11           | SH_RST      | S/H Reset.                                                         | 0   |         | 3.3    |
| 12           | PEAK_OUT    | Peak detector output.                                              | 1   |         | 2.5    |
| 13           | TRIGGER_OUT | Trigger output.                                                    | 0   |         | 3.3    |
| 14           | VB3         | Reference voltage.                                                 | 0.8 | 1       | 1.2    |
| 15           | VSS3        | Ground pin. Must be connected to 0V.                               |     | 0       |        |
| 16           | VSSA_DISC   | Ground pin for discriminator. Must be connected to 0V.             |     | 0       |        |
| 17           | DO          | Discriminator output (digital).                                    | 0   |         | 3.3    |
| 18           | TH_DISC     | Discriminator threshold input voltage.                             | 0   |         | 3.3    |
| 19           | DISC_IN     | Discriminator input voltage.                                       | 0.2 |         | 3.3    |
| 20           | VDDA_DISC   | Power supply input for discriminator.                              |     | 3.3     |        |
| 21           | VSSA_FA     | Ground pin for amplifier. Must be connected to 0V.                 |     | 0       |        |
| 22           | VSS2        | Ground pin. Must be connected to 0V.                               |     | 0       |        |
| 23           | FA2_OUT     | 2 <sup>nd</sup> Filter & amplifier output. Test pin.               | 0.2 |         | 3.2    |
| 24           | FA2_IN      | 2 <sup>nd</sup> Filter & amplifier input. Can be used for testing. | 0.5 |         | 2      |
| 25           | LPF_OUT     | Low pass filter output. Test Pin.                                  | 0.2 |         | 3      |
| 26           | LPF_IN      | Low pass filter external test input.                               | 0.2 |         | 3      |
| 27           | FA1_OUT     | 1 <sup>st</sup> Filter & amplifier output. Test pin.               | 1   |         | 3      |
| 28           | VDDA_FA     | Power supply input for amplifier.                                  |     | 3.3     |        |
| 29           | FA1_IN      | 1 <sup>st</sup> Filter & amplifier input. Can be used for testing. | 1   |         | 3      |
| 30           | VREF_FA     | Filter & amplifier reference. External pin for testing.            | 1   | 1.3     | 1.5    |
| 31           | VB2         | Reference Voltage                                                  | 0.8 | 1       | 1.2    |
| 32           | NC          | -                                                                  | -   | -       | -      |

Piera Systems Inc. reserves the right to make corrections, modifications enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Please contact Piera Systems anytime to obtain the latest relevant information. We are ready to help you determine which of our solutions will best meet your needs.



www.pierasystems.com 代理商联系方式: 样品,评估板,参考设计,报价,技术支持 电话:0755-82565851 邮件:dwin100@dwintech.com 手机:156-2521-4151 网址: www.dwintech.com/Piera\_Systems\_Inc.html 深圳市南频科技有限公司 D-Win Technology(HongKong) Co.,Ltd

