

HCP2D-3V

Advanced Humidity & Temperature Solution

Enhanced Features

- Improved Temperature Accuracy & Range (±0.2°C for -20 ~ 60°C)
- Extremely Low Current Consumption (13μA operating)
- I²C with Alarm Function
- Enhanced Accuracy of RH% (±2%RH, 14bit)
- Pin-to-Pin match with existing HumiChip®
- Fast Natural Recovery after Reflow Soldering
- Enhanced Reliability against Chemical

Product Summary

HCP2D-3V is an improved version of **HumiChip**[®], the most advanced and cost effective humidity and temperature sensing solution for virtually any type of applications.

Capacitive polymer sensor chip developed and fabricated in-house and CMOS integrated circuit with EEPROM are integrated into one embedded system in a reflow solder-able SMD package.

Individually calibrated and tested, **HCP2D-3V** performs ±2% from 20% to 80%RH (±4% over entire humidity range), and yet, is simple and ready to use without further calibration or temperature compensation.

HCP2D-3V provides linear output signals in various interfaces to customer requirements - the **standard I²C interface** and an **Alarm function** for preset control at min/max humidity.

Designed and manufactured by industry leading humidity and temperature sensing technology of **SAMYOUNG S&C** – field proven in HVAC and Auto industry for over 15 years, **HCP2D-3V** offers another smart sensing solution for excellent reliability, high accuracy, and cost effective sensing applications.

Application

Energy Saving HVAC Control

Air Conditioning, Refrigeration, IAQ monitoring, Vent Fans, Home Appliances, Humi/Dehumidifiers

Process Control & Instrumentations

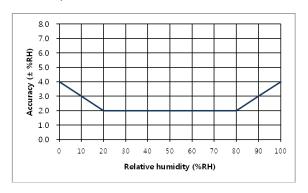
Medical Instruments, Handheld Devices, Weather Stations, Food Processing, Printers, RFIDs ...

Automobile & Transportation

Cabin Climate Control, Defogging Control Condensing Preventive Device ...,

Mass Quantity Application

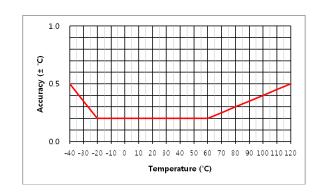
OEM custom specification available


Sensor Performance

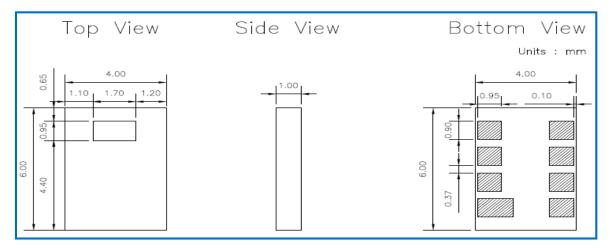
Relative Humidity (%RH)

* Custom Accuracy Tolerance Available

Resolution	14 bit (0.01%RH)
Accuracy ¹	±2.0 %RH (Figure 1)*
Repeatability	±0.2 %RH
Hysteresis	±1.5 %RH
Linearity	<2.0 %RH
Response time ²	Max 8.0 sec (τ 63%)
Operating range	0 ~ 100 %RH (Non-Condensing)
Long term drift	<0.5 %RH/yr (Normal condition)


- 1. Accuracies measured at 25 °C, 3.3V.
- Measured at 25°C, 1m/sec airflow for achieving 63% of step from 10%RH to 90%RH

Temperature (°C)

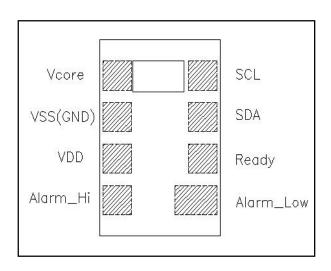

Resolution	14 bit (0.01℃)			
Accuracy ³	± 0.2 ℃ (Figure 2)			
Repeatability	± 0.1 ℃			
Response time ⁴	10.0 sec (τ 63%)			
Operating range	- 40 ~ 125 ℃			
Long torm drift	<0.05 ℃/yr (Normal			
Long term drift	condition)			

- 3. Accuracies measured at 25 °C, 3.3V.
- 4. Min 5.0 sec, Max 20 sec

Typical Temperature Accuracy

Dimensions

Electrical Specification


Supply Voltage	min 2.1V ~ max 3.6V
Supply Current (IDD)*1	13μA (typical)

^{*1.} at room temperature

Environmental

Operating Temperature	- 40 ~ 125℃
Operating Humidity	0~100%RH (non condensing)

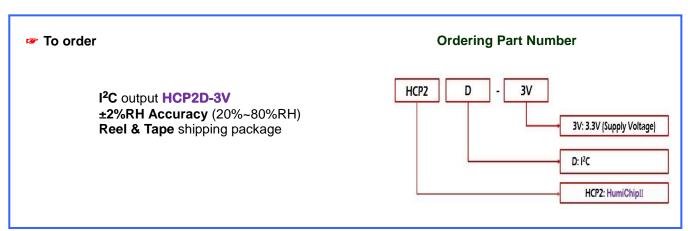
Pin Connection

Absolute Maximum Rating

Parameter	Min	Max
Supply Voltage (VDD)	-0.3V	4.0V
Storage Temp	-40℃	125℃
Junction Temp (T _j)	-40℃	125 ℃

Soldering Information

Standard or IR Solder Reflow. IPC/JEDEC standard $T_P \leq \! 250\, ^\circ \!\!\! \mathbb{C},\, t_P < 10 sec,\, T_L \! < \! 220\, ^\circ \!\!\! \mathbb{C},\, t_L \! < \! 60 sec.$ $Tp(Peak Temperature),\, t_P(Peak Time),\, T_L(Critical Zone Temperature),t_L(Critical Zone Time) Ramp-up/down speed <math display="inline">< 6\, ^\circ \!\!\! \mathbb{C}/sec$


Package Contents

Capacitive polymer RH Sensor, Poly Silicon Temperature sensor integrated ASIC chip in LCC (Leadless Chip Carrier) package, SMD.

RoHS Compliant

Shipping

Reel & Tape: 500 or 2,500 ea

Application Guide

CONTENTS

1. G	GENERAL INFORMATION	7
1.1	Preliminary Consideration	7
1.2	Operating Conditions	7
1.3	Heating	7
1.4	Soldering Instruction	7
1.5	Storage and Handling Information	3
1.6	Reconditioning Procedure	
1.7	Material Contents	3
1.8	Traceability Information	3
1.9	Shipping Package	
2. IN	NTERFACE SPECIFICATION	10
2.1	Power Pads (VDD, VSS, V _{CORE})	10
2.2	I ² C CLOCK & DATA PADS (SDA, SCL)	10
2.3	Alarm Pads (Alarm_Low, Alarm_High)	10
2.4	Ready Pad (Ready)	11
3. El	LECTRICAL SPECIFICATION	12
3.1	Absolute Maximum Rating	12
3.2	Electrical Specification and Recommended Operating Conditions	12
3.3	Output Pad Drive Strength	12
3.4	ESD	12
4. C	OMMUNICATING WITH HCP2D-3V	14
4.1	Power–On Sequence	12
4.2	I ² C COMPATIBLE INTERFACE	14
4	4.2.1	
4	4.2.2 PC Read	
4	4.2.3	
4.3	OPCODE	17
4.4	Data Fetch	17
4.5	Ready Pin	19
4.6	EEPROM	19
4.7	Configurations	20
4	4.7.1 RunBit	20

4.7.2 Status Register	20
5. ALARM FUNCTION (OPTIONAL)	23
5.1 ALARM OUTPUT	23
5.2 Alarm Registers	23
5.3 ALARM OPERATION	23
6. REVISION HISTORY	25

List of Tables and Figures

Tables

	Pin Descriptions	
	Absolute Maximum Rating	
Table 3	Recommended Operating Conditions	
Table 4	Electrical Characteristics Specifications	
Table 5	Characteristics of the SDA and SCL bus lines	
Table 6	Opcode	
Table 7	Humidity & Temperature Conversion Formula	14
	Result Register	
	EEPROM Timings	
Table 10	Commands for configurations	20
Table 11	Status Register Details	20
Table 12	EEPROM Assignments	22
Гінштоп		
<u>Figures</u>		
Figure 1	Operating Conditions	7
Figure 2	Soldering Profile	
Figure 3	Land Pattern	
Figure 4	Packing Reel & TapePacking Reel & Tape	9
Figure 5	Packing (Box)	
Figure 6	Typical Application Circuit	
Figure 7	Power-On Sequence	
Figure 8	Address Byte	
Figure 9		
Figure 10) I ² C principle sequence	
Figure 11		
Figure 12	2 I ² C Read procedure	
Figure 13		
Figure 14		
Figure 15		
Figure 16		
Figure 17		21
Figure 18	B EEPROM power controlled by user: Read	21
Figure 19		21
Figure 20	DEEPROM power controlled automatically: Read	21
Figure 21	I Example of Alarm Function	23
Figure 22	Alarm Output Flow Chart	20
Figure 23	Bang-Bang Humidity Control (Digital Output)2	204

1. General Information

1.1 Preliminary Consideration

To maximize the performance of **HCP2D-3V**, it is important to plan an appropriate location of the sensor at the design stage. Airflow and proper exposure to ambient air must be secured for **HCP2D-3V** to ensure expected performance. Airflow holes must NOT be blocked. Any heat

generating parts near **HCP2D-3V** will distort the proper measurement of relative humidity and temperature reading, and either should be avoided or measures should be taken to prevent heat transfer.

1.2 Operating Conditions

HCP2D-3V's maximum and recommended normal operating condition is shown in Figure 1. Within the Normal Range, HCP2D-3V performs stably. Prolonged exposures to conditions outside normal range, especially at humidity over 90%RH, may temporarily offset the RH signal up to ±3%RH. When return to Normal Range, it will gradually recover back to the calibration state.

Re-Conditioning Procedure in **Section 1.6** will help reduce this recovery time. Long term exposure to extreme conditions may also accelerate aging of the sensor.

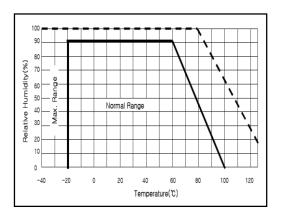


Figure 1 Operating Conditions

1.3 Heating

Heat sources such as power electronics, microcontrollers, and display near the sensor may affect the accurate measurement. The location of Sensor near such heat sources should be

avoided by maintaining distance or thermal buffer. Thin metal pattern, or even better, 'milling slits' around the sensor also may help reduce the error.

1.4 Soldering Instruction

HCP2D-3V is designed for mass production reflow soldering process. It is qualified for soldering profile according to IPC/JEDEC J-STD-020D (see <u>Figure 2</u>) for Pb-free assembly in standard reflow soldering ovens or IR/Convection reflow ovens to withstand peak temperature at 250 °C and peak time up to 10 sec. For soldering in Vapor Phase Reflow (VPR) ovens the peak conditions are limited to T_P < 250 °C with t_P <10sec and ramp-up/down speeds shall be limited to 6 °C/sec.

Note: Test or measurement right after reflow soldering may read an offset as the sensor needs time for stabilization from the soldering heat. The recovery time may vary depending on reflow soldering profile and ambient storage condition.

For most of the standard reflow soldering, allow 12 hours of stabilization under room environment $(23\pm3^{\circ}\text{C}, 55\pm5\%\text{RH})$.

NO extra rehydration process is required after reflow soldering for **HCP2D-3V**.

Contact our **customer support** for optimal reflow soldering process. [sales@samyoungsnc.com]

For Land Pattern dimensions, see Figure 3.

Note: The distance between the Vcore capacitor and pad has to be within the 10mm and the tracks of the Power and GND have to be more than 12 mil.

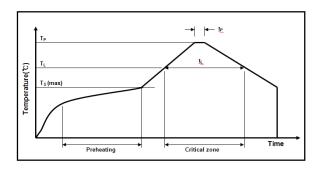


Figure 2 Soldering Profile

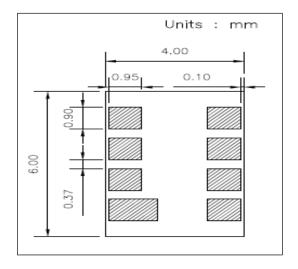


Figure 3 Land Pattern

1.5 Storage and Handling Information

HCP2D-3V contains polymer based capacitive humidity sensor sensitive to environment, and should NOT be handled as an ordinary electronic component.

Chemical vapors at high concentration may interface with the polymer layers, and coupled with long exposure time, may cause a shift in both offset and sensitivity of the sensor.

Despite the sensor endures the extreme conditions of -40 $^{\circ}\text{C} \sim 125\,^{\circ}\text{C}$, 0%RH~100%RH (non condensing), long term exposure in such

environment may also offset the sensor reading. Hence, once the package is opened, it is recommended to store in clean environment of temperature at $5\,^{\circ}\text{C} \sim 55\,^{\circ}\text{C}$ and humidity at $10\%\sim 70\%$ RH.

HCP2D-3V is protected of ESD up to 2000V and Latch-up in the range of ±150mA to ±200mA and also packed in ESD protected shipping material. Normal ESD precaution is required when handling in assembly process.

1.6 Reconditioning Procedure

If **HCP2D-3V** is exposed or contaminated with chemical vapors, the following reconditioning procedure will recover the sensor back to calibration state.

Baking: 120℃ for 6 hrs and

Re-Hydration: 30°C at > 80%RH for 24 hrs

1.7 Material Contents

HCP2D-3V consists of sensor cell and IC (polymer / glass & silicon substrate) packaged in a surface mountable LCC (Leadless Chip Carrier) type package. The sensor housing consists of a PPS (Poly Phenylene Sulfide) cap with epoxy glob top on a standard FR4 substrate. Pads are

made of Au plated Cu. The device is free of Pb, Cd and Hg.

RoHS compliant / REACH report available

1.8 Traceability Information

HCP2D-3V is laser marked with product type and lot identification.

The first line denotes the sensor type: HCP2D for I^2C output.

Lot identification is printed on the second line with

5 digit alphanumeric code.

Further information about individual sensor is electronically stored on the chip.

1.9 Shipping Package

HCP2D-3V is provided in a tape & reel shipment packaging, sealed into antistatic ESD trays. Standard packaging sizes are 2,500 or 500 units per reel. The drawing of the packaging tapes with sensor orientation and packing box dimensions are shown in Figure 4 and Figure 5.

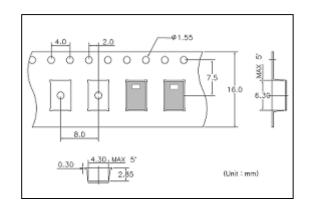


Figure 4 Packing Reel & Tape

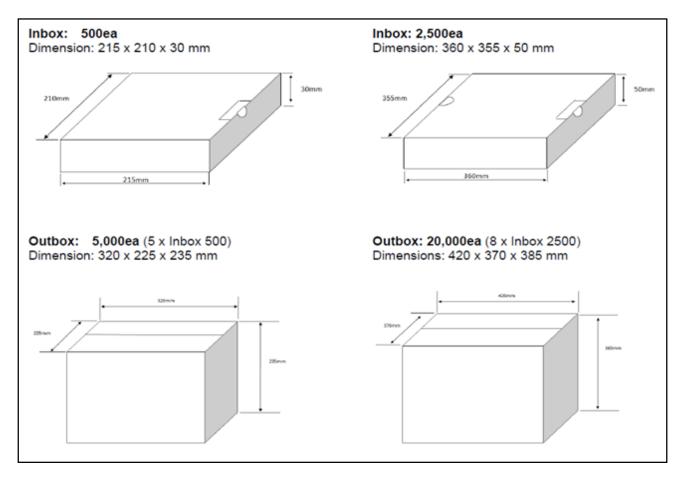
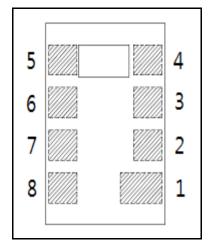



Figure 5 Packing (Box)

2. Interface Specification

Pin No	Digital Output (I ² C Interface)			
1	Alarm_Low			
2	Ready			
3	SDA			
4	SCL			
5	V _{CORE}			
6	VSS			
7	VDD			
8	Alarm_High			

Table 1 Pin Descriptions

2.1 Power Pads (VDD, VSS, V_{CORE})

HCP2D-3V is capable of operating on range of power supply voltage from 2.1V to 3.6V. Power supply should be connected to VDD(pad7). VDD and VSS(pad6) should be decoupled with a 10μ F capacitor.

Note: Vcore must not be connected to VDD, and it must always be connected to an external 4.7 μ F capacitor to ground. (see **Figure 6**)

2.2 I²C Clock & Data Pads (SDA, SCL)

The sensor's data is transferred in and out through the SDA pad while the communication between **HCP2D-3V** and microcontroller (MCU) is synchronized through the SCL pad.

HCP2D-3V has an internal temperature compensated oscillator that provides time base for all operation, and uses an I²C-compatible communication protocol with support up to 100kHz bit rates.

External pull-up resistors are required to pull the

drive signal high, that can be included in I/O circuits of microcontroller. (see <u>Figure 6</u>) If pads(SDA and SCL) are not used, SCL should be connected to VDD and SDA should be connected GND.

Further information about timing and communication between the sensor and microcontroller is explained in **Section 4**. Communicating with **HCP2D-3V**.

2.3 Alarm Pads (Alarm_Low, Alarm_High)

The alarm output can be used to monitor whether the sensor reading has exceeded or fallen below pre-programmed values. The alarm outputs are full push-pull driver type. If a high voltage application is required, external devices can be controlled with the Alarm pins.

The two alarm outputs can be used simultaneously, and these alarms can be used in combination with the I²C. Further information about Alarm control is explained in **Section 6**.

2.4 Ready Pad (Ready)

The signal on Ready pad indicates whether the output data is valid or not. It can be used connecting to interrupt pin or GPIO in

microcontroller. If it is not used, it can be left unconnected.

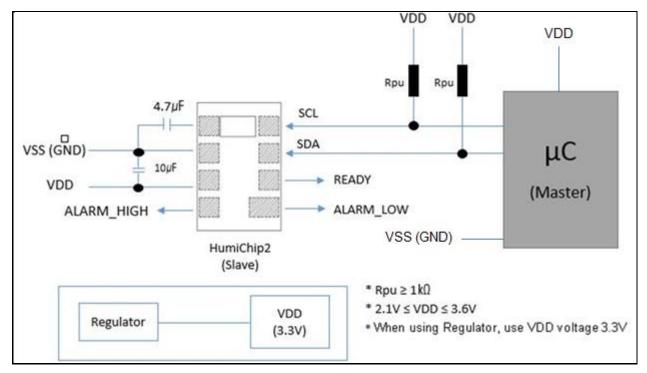


Figure 6 Typical Application Circuit

3. Electrical Specification

3.1 Absolute Maximum Rating

<u>Table 2</u> shows the Absolute Maximum Ratings for HCP2D-3V. Exposure to these extreme condition for extended period may deteriorate the sensor

performance and accelerate aging. Functional operation is not implied at these conditions.

3.2 Electrical Specification and Recommended Operating Conditions

The operating conditions recommended for **HCP2D-3V** is given in the electrical specification is shown in **Table 4**.

3.3 Output Pad Drive Strength

Output pad drive strength is 4mA.

3.4 **ESD**

All pins have an ESD rating of up to 2kV. The ESD test follows the Human Body Model with C=150pF

and R=330 Ω based on IEC61000-4-2

Table 2 Absolute Maximum Rating

PARAMETER	SYMBOL	MIN	MAX	Unit
Supply Voltage (VDD to GND)	V _{SUPPLY}	-0.3	4.0	V
Storage Temperature Range	T _{STG}	-40	125	°C
Junction Temperature	Tj	-40	125	°C

Table 3 Recommended Operating Conditions

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	2.1		3.6	V
Ambient Temperature Range	T _{AMB}	-40		125	°C
External Capacitance between V _{DD} pin and Gnd	C _{VSUPPLY}		10		μF
External Capacitance between Vcore and Gnd	C _{VCORE}		4.7		μF
Pull-up on SDA and SCL*1	R _{PU}	1			kΩ

^{*1 :} The SDA and SCL should not be left in the open state..

^{*2:} For the capacitor, the X7R or C0G is recommended.

Table 4 Electrical Characteristics Specifications

PARAMETER	SYMBOL	REMARKS	MIN	ТҮР	MAX	UNIT
Current consumption	I _{DD}	At 3V, 1Hz		13		μA
Digital port voltage	Vio_digital	Relative to ground	-0.6	3.3	V _{DD} +0.6 ≤ 3.6	V
Digital ports switching level		$\begin{array}{c} HIGH \to LOW \\ LOW \to HIGH \end{array}$		0.3*V _{DD} 0.7*V _{DD}		V
Start-Up-Time · Power-on (POR) to data ready	t _{STA}				10	ms
Measuring Rate				5		Hz
EEPROM Data Retention Period		at 95°C temperature			10	Year
OTP Data Retention Period		at 95°C temperature			10	Year

4. Communicating with HCP2D-3V

4.1 Power-On Sequence

On system Power-On-Reset, the **HCP2D-3V** wakes as an I²C device. After power-on-reset, start-up-time is required 10_{ms}.

The CDC is triggered by the conversion timer. After the CDC is completed, the RDC will be

performed sequentially. Then the DSP calculate and update the humidity and temperature to Result Register. The measurement rate is 5Hz (200 ms) by conversion timer. See the <u>Figure 7</u> Power-on Sequence.

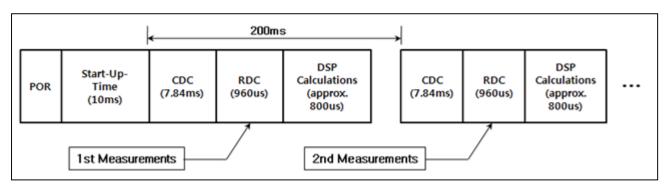


Figure 7 Power-On Sequence

4.2 I²C Compatible Interface

The present paragraph outlines the HCP2D-3V device specific use of the I²C interface. The external master (HCP2D-3V cannot be master) begins the communication by creating a start condition, falling edge on the SDA line while SCL is HIGH. It stops the communication by a stop condition, a rising edge on the SDA line while SCK is high. Data bits are transferred with the rising edge of SCK.

On I²C buses, every slave holds an individual 7-bit device address (0x28 fixed). This address always has to be sent as the first byte after the start condition. The eighth bit indicating the direction of the following data transfer (Read: 1 and Write: 0). The address byte is followed by the opcode and eventually the payload. Each byte is followed by an acknowledge bit (0: when a slave acknowledges).

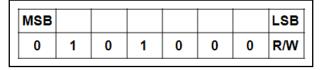


Figure 8 Address Byte

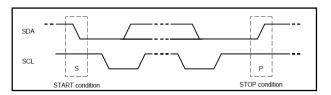


Figure 9 START and STOP condition

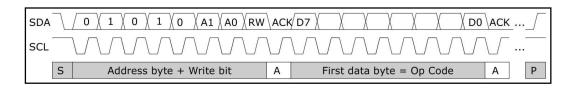


Figure 10 I²C principle sequence

4.2.1 I2C Write

During write transactions, the master alone sends data, the addressed slave just sends the acknowledge bit. The master first sends the slave address plus the write bit. Then it sends the

HCP2D-3V specific opcode including the register address in the slave. Finally it sends the payload ("Data").

Figure 11 I²C Write procedure

4.2.2 I2C Read

During read transactions, the direction of communication has to be commuted. Therefore, the master creates again a start condition and

sends the slave address plus the read bit (instead of the write bit) to switch into read mode.

Figure 12 shows.

Figure 12 I²C Read procedure

After arrival of the first (or any) data byte, the master may be either signal Not-Acknowledge or Acknowledge.

Not-Acknowledge (=N=1) indicate "end of read" and "stop sending" to the slave.

Acknowledge (=A=0) indicate "continue in automatic address-increment mode" and thus receive many bytes in a row. As one can see, automatic address increment is particularly useful and efficient with the I²C interface.

4.2.3 I²C Timing

The **HCP2D-3V** uses I^2C -compatible communication protocol with support for Max 100 kHz bit rates. See <u>Figure 13</u> and <u>Table 5</u>.

Note: Please refer to the l²C-bus specification for Detailed Timing Chart. And Reference Programming Code are available upon request.

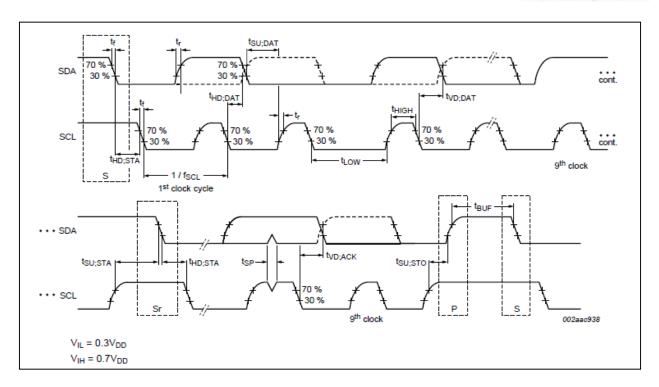


Figure 13 Definition of timing for device on the I²C-bus

Table 5 Characteristics of the SDA and SCL bus lines

PARAMETER	SYMBOL	MIN	MAX	UNIT
SCL clock frequency*1	f _{SCL}	0	100	kHz
hold time (repeated) START condition	thd:STA	4.0		μs
LOW period of the SCL clock	t _{LOW}	4.7		
HIGH period of the SCL clock	thigh	4.0		
set-up time for a repeated START condition	tsu:sta	4.7		
data hold time*2	t _{HD:DAT}	0		
data set-up time	tsu:dat	250		ns
rise time of both SDA and SCL signals	t _r		1000	ns
Fall time of both SDA and SCL signals	t _f		300	ns
set-up time for STOP condition	tsu:sto	4.0		μs
Bus free time between a STOP and START condition	t _{BUF}	4.7		μs
capacitive load for each bus line	Сь		400	pF
data valid time	tvd:dat		3.45	μs
data valid acknowledge time	t _{VD:ACK}		3.45	μs

^{1.} Overclocking is technically possible but within the sole responsibility of the customer (a license may be necessary)

^{2.} The data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.

A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of SCL.

4.3 Opcode

All commands for write or read to memory or configuration or result registers may use explicit addressing or address auto-increment.

Note: Besides the case of reading the result registers, it is recommended to deactivate the

converter for any communication to configuration registers or EEPROM. This is done by setting the RunBit to '0'. After the communication process the RunBlt needs to be set back to '1'. For more details, see the **Section 4.7.**

Table 6 Opcode

Description	BYTE 2								BY	ΓE 1	BYTE 0
Read Result	0	1	0	0	0	0	0	0	0	Addr <60>	
Write configuration	1	1	0	0	0	0	0	0	0	Addr <60>	Data <70>
Write EEPROM	1	1	1	0	0	0	0	0	0	Addr <60>	Data <70>
Read EEPROM	0	1	1	0	0	0	0	0	0	Addr <60>	
Erase EEPROM	1	1	1	0	0	0	1	0	0	Addr <60>	[Dummy Byte]
Power-on Reset*1	1	0	0	0	1	0	0	0			

^{1.} It takes about 280us until the first(cdc) measurement starts.

4.4 Data Fetch

The Data Fetch (DF) command is used to fetch data from **HCP2D-3V**. An I²C Data Fetch command starts with the 7-bit slave address and the 8th bit 1(Read). The **HCP2D-3V** as the slave sends an acknowledgement (ACK) indicating success.

The number of data bytes returned by the **HCP2D-3V** is determined by when the master sends the NACK and stop condition. <u>Figure 14</u> shows examples of fetching three bytes respectively.

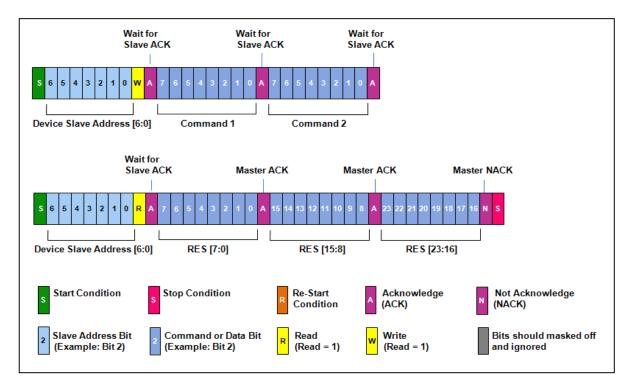


Figure 14 I²C Measurement Packet Reads

The data has to be read from Result Register (see <u>Table 8</u>) using the Read Result command in order to fetch the humidity and temperature. Read Result command consists of 0x40 and 7-bit address. 7-bit address is 0x00(for temperature) or 0x03(for humidity). After commands are transferred, 3-bytes data is read from HCP2D-3V. First 2-bytes are humidity or temperature. They are signed integer, two's complement fixed-point. The lower byte is fractional digits and the higher

byte is integer values. Third byte is Checksum. If it is not used, only 2-bytes can be read. The checksum and output data are calculated as

Table 7.

To read temperature and humidity at a time, data of 6-Bytes can be fetched from **HCP2D-3V** after commands (0x40+0x00) are sent. The first 3-bytes are temperature and the next 3-bytes are humidity.

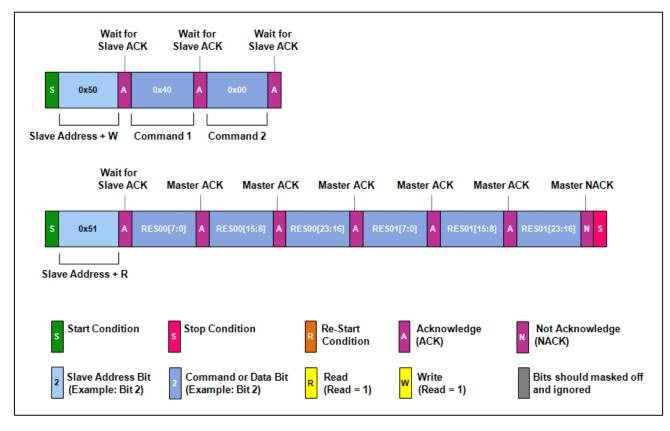


Figure 15 Example: Temperature and Humidity data fetch

Table 7 Humidity & Temperature Conversion Formula

Humidity & Temperature Conversion Formula					
Humidity Output (%RH) RES01[15:0] / 256					
Temperature Output (°C)	RES00[15:0] / 256				
Checksum RES[2316] = (RES[158] + RES[7:0]) % 256					

Note: '%' symbol in Checksum Formula means mod operation.

Table 8 Result Register

Name	Res	Address	fpp	Description
Temperature (°C)	00	02	8	Determined temperature in °C (-40 ~ 125°C)
Humidity (%RH)	01	35	8	Determined relative humidity in %RH (0 ~ 100%RH) (Temperature compensated)

4.5 Ready Pin

The READY signal is intended to show that measurement data is processed and ready to fetch. After power-up, the READY is 0. When the measure data is processed and ready to fetch, the READY is set to 0. **HCP2D-3V** is able to detect interface activity. When interface activity (reading of measure data) is detected, READY is

set back to 1.

The Ready pin's output driver type is full push-pull. Point-to-point communication most likely uses the full push-pull driver.

Note: If the output mode is Analog, the ready signal cannot be used.

4.6 EEPROM

The EEPROM array contains the calibration coefficients for gain and offset, etc., and the configuration bits for the output modes, measuring rate, etc.. The **HCP2D-3V** EEPROM is arranged as 127 Bytes (see Table 12).

Only 1's can be written to the EEPROM.

See **Section 4.3** for instructions on reading and writing to the EEPROM via the I²C interface. When programming the EEPROM, an internal charge pump voltage is used; therefore a high voltage supply is not needed.

Only 1's can be written to the EEPROM. Therefore, it is necessary to erase the EEPROM cells before writing new data. EEPROM communication may use address auto-increment. In case of "Erase EEPROM" the incremental write is achieved by sending additional dummy bytes.

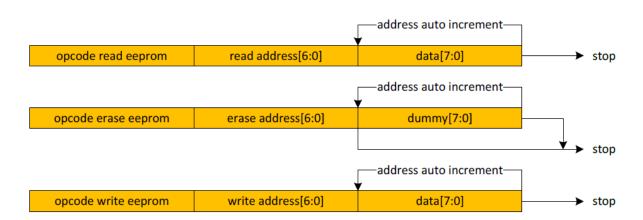


Figure 16 EEPROM communication

It is necessary to wake up the EEPROM before each write access. Therefore, enable EEPROM after clear RunBit. The EEPROM wakeup can be done

explicitly or automatically. It is mandatory to take care of the setup timings, for each individual byte

Table 9 EEPROM Timings

Symbol	Description	Тур.
t _{rdsu}	Set-up Time for reading	300µs
t _{rd}	Read Time from EEPROM	600 ns
t _{wrsu}	Set-up Time for Writing	200µs
t _{wr}	Write Time to EEPROM	6.8ms

4.7 Configurations

4.7.1 RunBit

The RunBit enables or disables the front-end and the DSP. It is indicated in the Status Register bit0. When the Configuration Register or EEPROM is accessed, the Runbit should be '0'. Then, as a last step, RunBit should be set to '1' again. Use the POR command in order to re-start the measurement after access is completed.

Table 10 Commands for configurations

Command	CMD1	CMD2	CMD3
Set RunBit	0xC0	0x4D	0x01
Clear RunBit	0xC0	0x4D	0x00
Enable EEPROM	0xC0	0x1C	0xC4
Disable EEPROM	0xC0	0x1C	0x44

4.7.2 Status Register

Address 24 in the Result Register is the Status Register. The EEPROM state and the RunBit are displayed in the Status Register.

For more information, see **Section 4.6 EEPROM** and **Section 4.7.1 RunBit**.

Table 11 Status Register Details

Bit#	Name	Description
0	RunBit	Run Bit (0: Disable, 1: Enable)
2:1	Reserved	
3	EE_BUSY	EEPROM busy
7:4	Reserved	

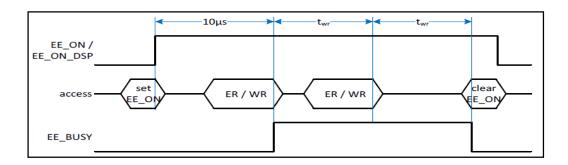


Figure 17 EEPROM power controlled by user: Write / Erase

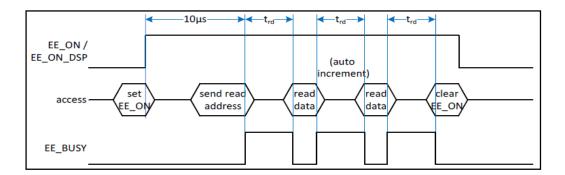


Figure 18 EEPROM power controlled by user : Read

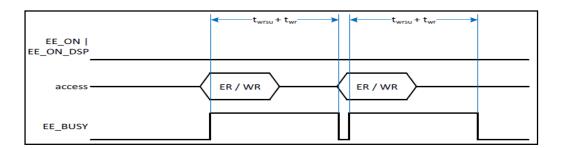


Figure 19 EEPROM power controlled automatically: Write / Erase

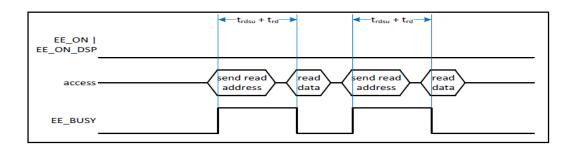


Figure 20 EEPROM power controlled automatically : Read

Table 12 EEPROM Assignments

Address (HEX)	Bit Range	Default	Name	Description and Notes
84(54h)	15:8	0x00	Alarm High On	High alarm on trip point (16bits signed integer, two's
85(55h)	7:0	0x00	Alarm_High_On	complement, fixed point with 8fpp)
86(56h)	15:8	0x00	Alarm High Off	High alarm off trip point (16bits signed integer, two's
87(57h)	7:0	0x00	Alarm_High_Off	complement, fixed point with 8fpp)
88(58h)	15:8	0x00	Alama Law Off	Low alarm off trip point (16bits signed integer, two's
89(59h)	7:0	0x00	Alarm_Low_Off	complement, fixed point with 8fpp)
90(5Ah)	15:8	0x00	Alama Law On	Low alarm on trip point (16bits signed integer, two's
91(5Bh)	7:0	0x00	Alarm_Low_On	complement, fixed point with 8fpp)

5. Alarm Function (Optional)

5.1 Alarm Output

The alarm output can be used to monitor whether Humidity reading has exceeded or fallen below pre-programmed values. The alarm is functioned as a full push-pull driver. If a high voltage application is required, external devices can be controlled with the Alarm pads, as demonstrated in Figure 23.

In standard **HCP2D-3V** Analog Output mode, only the High Alarm can be used.

5.2 Alarm Registers

Four registers (Alarm_High_On, Alarm_High_Off, Alarm_Low_On, and Alarm_Low_Off) are associated with the alarm functions. (see

<u>Table</u> 12) Each of these four registers is a 2-byte value that determines where the alarms turn on or off. The two high alarm registers form the

output with hysteresis for the Alarm_High pin, and the two low alarm registers form the output with hysteresis for the Alarm_Low pin.

5.3 Alarm Operation

As shown in Figure 21 the Alarm_High_On register determines where the high alarm trip point is and the Alarm_High_Off register determines where the high alarm turns off if the high alarm has been activated. The high alarm hysteresis value is equal to Alarm_High_On — Alarm_High_Off. The same is true for the low

alarm where Alarm_Low_On is the low alarm trip point with Alarm_Low_Off determining the alarm shut off point. The low alarm hysteresis value is equal to Alarm_Low_Off – Alarm_Low_On.

<u>Figure 22</u> shows output operation flowcharts for both the Alarm_High and Alarm_Low pins.

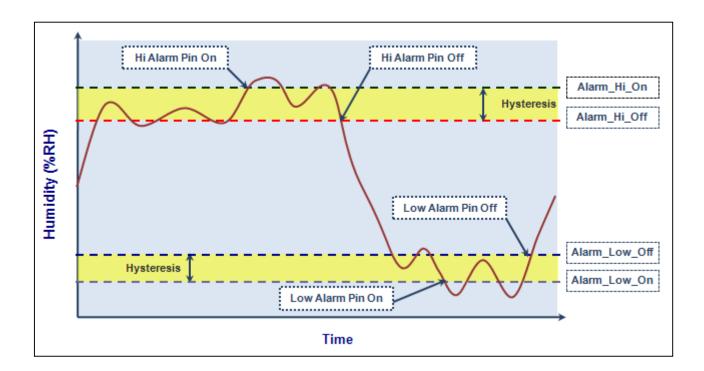


Figure 21 Example of Alarm Function

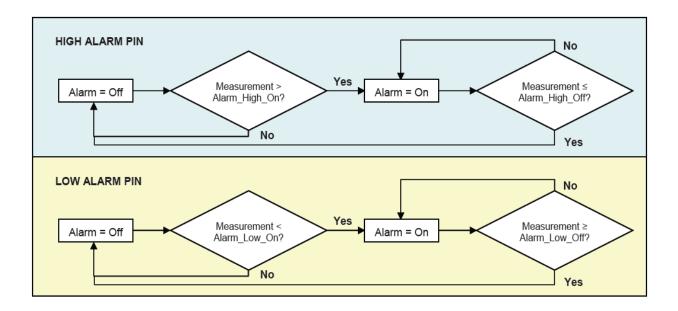


Figure 22 Alarm Output Flow Chart

HCP2D-3V also can be directly installed to a device without MCU interface when only a switch on/off function is required at desired

humidity level. (e.g. Bathroom Vent Fan, Humidifiers, Dehumidifiers)

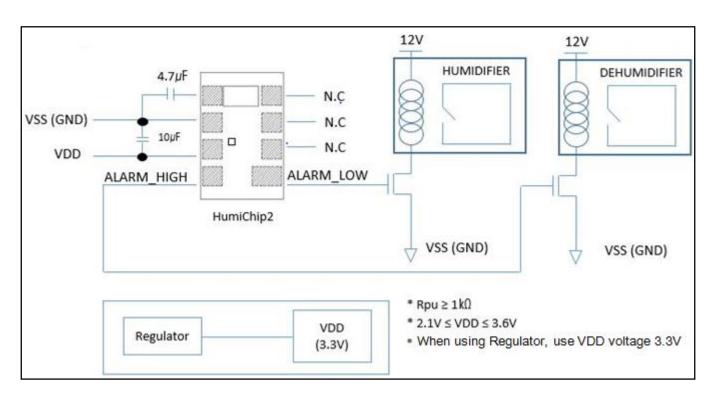


Figure 23 Bang-Bang Humidity Control (Digital Output)

6. Revision History

Date	Version	Page(s)	Changes
11 SEPTEMBER 2015	1.0		First Release

This publication is the proprietary product of **SAMYOUNG S&C** and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of **SAMYOUNG S&C**. Express written permission is also required before a third party may make any use of this publication.

技术 & 商务联系方式: 南频科技有限公司 陈小姐 业务工程师 156 2521 4151 rita.chen@dwintech.com www.dwintech.com 座机0755-82565851

This Application Guide should be used only for intended and authorized application of **HCP2D-3V**.

Please consult with **SAMYOUNG S&C** for any specific application requirements and for detailed datasheet.

Copyright 2015[©], **SAMYOUNG S&C**

